E-CORDIAL LABELING OF SOME PATH UNION GRAPHS

Mukund V. Bapat ${ }^{1}$
Abstract: Path union of graph G i.e. $P_{m}(G)$ is obtained by fusing a copy of graph G at each vertex of a path P_{m}. Vertex of fusion is same and fixed for all graphs. We discuss e-cordial labeling of $P_{m}(G)$ for $G=$ claw, paw, kite and show that $P_{m}(G)$ is e-cordial.

Key words: E-cordial, path union, fusion, edge, vertex.

Subject Classification: 05C78

Introduction:

In 1997 Yilmaz and Cahit [4] introduced a weaker version of edge graceful labeling called E-cordial. The word cordial was used first time in this paper. Let G be a graph with vertex set V and edge set E . Let f be a function that maps E into $\{0,1\}$. Define f on V by $\mathrm{f}(\mathrm{v})=\sum\{f(u v) /$ $(u v) \in E\}(\bmod 2)$.The function f is called as E cordial labeling if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$. Where $e_{f}(i)$ is the number of edges labeled with $i=0,1$ and $v_{f}(i)$ is the number of vertices labeled with $i=0,1$. We also use $v_{f}(0,1)=(a, b)$ to denote the number of vertices labeled with 0 are a in number and that with 1 are b in number. Similarly $e_{f}(0,1)=(x, y)$ to denote number of edges labeled with 0 are x in number and that labeled with 1 are y in number. A lot of work has been done in this type of labeling and the above mentioned paper gave rise to number of papers on cordial labeling. A graph that admits E-cordial labeling is called as E-cordial graph. Yilmaz and Cahit has shown that Trees T_{n} with n vertices and Complete graphs K_{n} on n vertices are E - cordial iff n is not congruent to 2 (modulo 4). Friendship graph $C_{3}{ }^{(n)}$ for all n and fans F_{n} for n not congruent to $1(\bmod 4)$. They observe that a graph with n vertices is not e-cordial if $n \equiv 2(\bmod 4)$. One may refer A Dynamic survey of graph labeling for more details on completed work.

Preliminaries:

Fusion of vertex. Let G be a (p, q) graph. let $u \neq v$ be two vertices of G. We replace them with single vertex w and all edges incident with u and that with v are made incident with w. If a loop is formed is deleted. The new graph has $p-1$ vertices and at least $q-1$ edges.[].If $u \in G_{1}$ and $v \in G_{2}$, where G_{1} is $\left(p_{1}, q_{1}\right)$ and G_{2} is $\left(p_{2}, q_{2}\right)$ graph. Take a new vertex w and all the edges incident to u and v are joined to w and vertices u and v are deleted. The new graph has $p_{1}+p_{2}-1$ vertices and $q_{1}+q_{2}$ edges. Sometimes this is referred as u is identified with v.
Path union of G i.e. $P_{m}(G)$ is obtained by taking a path P_{m} and m copies of graph G. Fuse a copy each of G at every vertex of path at given fixed point on G. It has $m p$ vertices and $m q+m-1$ edges, where G is a (p, q) graph. If we change the vertex on G that is fused with vertex of Pm then we generally get a path union non isomorphic to earlier structure. In this paper we define a e-cordial function f that does not depends on which vertex of given graph G is used to obtain path union. This allows us to obtain path union in which the same graph G is fused with vertices of Pm at different vertices of G, as our choice and the same function f is applicable to all such structures that are possible on $P_{m}(G)$.

Main Results:

Theorem 4.1 Path union of claw is e-cordial.
Proof: There are two possible structures of $P_{m}(G)$.From figure 4.1 it follows that one can take path union at vertex ' u ' giving structure 1 and the one point union at point v will give structure 2. The two structures are non-isomorphic. Take a path $\mathrm{P}_{\mathrm{m}}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{m}}\right)$. Each edge on Pm has label ' 0 '. At each vertex fuse a copy of Type A labeling at vertex u. The resultant graph has label distribution given by $v_{f}(0,1)=(2 m, 2 m), e_{f}(0,1)=$ $(2 \mathrm{~m}-1,2 \mathrm{~m})$. If we form path union at vertex v of claw then also the above type A label will work and label distribution also same.

Fig 4.3 claw :
$\mathrm{V}_{\mathrm{f}}(0,1)=(2,2)$,
$\mathrm{e}_{\mathrm{f}}(0,1)=(1,2)$

Theorem 4.2 Path union of paw is e-cordial for all m.
Proof: Define a function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$.It gives us following two types of labeled copies of paw.

Fig 4.5 paw :
$\mathrm{v}_{\mathrm{f}}(0,1)=(2,2)$,
$\mathrm{e}_{\mathrm{f}}(0,1)=(2,2)$

Fig 4.6 paw :
$\mathrm{v}_{\mathrm{f}}(0,1)=(2,2)$,
$\mathrm{e}_{\mathrm{f}}(0,1)=(1,3)$

There are three possible structures of $\mathrm{P}_{\mathrm{m}}(\mathrm{G})$.From figure 4.3 it follows that one can take path union at vertex ' u ' giving structure 1 and the path union at point v will give structure 2 and path union at w giving structure 3. All structures are pairwise non-isomorphic. Take a path $P_{m}=\left(v_{1}, v_{2}\right.$, ..$v_{m}$). Each edge on P_{m} has label ' 0 '. At each vertex v_{i} fuse a copy of Type A labeling (at vertex u) for all $i \equiv 1(\bmod 2)$ and copy of Type B if $i \equiv$ $0(\bmod 2)$. The resultant graph has label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(2 \mathrm{~m}, 2 \mathrm{~m}), \mathrm{e}_{\mathrm{f}}(0,1)=(2 \mathrm{x}+1,2 \mathrm{x}+1)$ for odd number $\mathrm{m}=2 \mathrm{x}-1 ; \mathrm{x}=0,1,2$. $v_{f}(0,1)=(2 m, 2 m), e_{f}(0,1)=(4+5(x-1), 5 x)$ for even number $m=2 x=1,2$. If we form path union at vertex ' v ' or at ' w ' of claw then also the above type A label will work and label distribution is also same. Thus the function f is independent of the vertex of paw used to form pathunion.

Theorem 4.3 Path union (P_{m} (house)) of house is e-cordial for m is not congruent to $2(\bmod 4)$
Proof: Define a function $f: E(G) \rightarrow\{0,1\}$.It gives us following three types of labeled copies of house graph. Take a path Pm $==\left(v_{1}, v_{2}, . . v_{m}\right)$. Each edge on P_{m} has label ' 0 '. At v_{1} fuse a copy of type A label, at v_{2} fuse a copy of type B label, at v_{3} fuse type C label. For $i>3$ at each vertex v_{i} fuse a copy of Type A labeling for all $i \equiv 0(\bmod 4)$ and copy of Type B if $i \equiv 1,3(\bmod 4)$ copy of Type C if $i \equiv 2(\bmod 4)$. The resultant graph

Fig $4.7: \mathrm{v}_{\mathrm{f}}(0,1)=$
$(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$

Fig $4.8: \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2), e_{f}(0,1)=(2,4)$

Fig 4.9 : $\mathrm{v}_{\mathrm{f}}(0,1)=$ $(1,4), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$
has label distribution given by $v_{f}(0,1)=(3,2), e_{f}(0,1)=(3,3)$ for $m=1$, for $m=2$ is given by $v_{f}(0,1)=(6,4), e_{f}(0,1)=(6,7)$. For all m of type $4 x$, $\mathrm{x}=1$, 2.. we have label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(10 \mathrm{x}, 10 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(14 \mathrm{x}, 14 \mathrm{x}-1)$. For all m of type $4 \mathrm{x}+1$, $\mathrm{x}=0$, 1 , 2 .. we have label distribution given by $v_{f}(0,1)=(13+10 x, 12+10 x), e_{f}(0,1)=(14 x+17,14 x+17)$. For all m of type $4 x+2, x=0,1,2 .$. we have label distribution given by $v_{f}(0,1)=(14+10 x, 16+10 x), e_{f}(0,1)=(14 x+21,14 x+20)$. For all m of type $4 x+3, x=0,1,2$.. we have label distribution given by $v_{f}(0,1)=$ $(7+10 x, 8+10 x), e_{f}(0,1)=(14 x+10,14 x+10)$.
The function f is independent of the vertex of house used to form pathunion.
Theorem 4.4 Path union ($\mathrm{G}=\mathrm{P}_{\mathrm{m}}$ (bull) of bull is e-cordial for m is not congruent to $2(\bmod 4)$
Proof: Define a function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$.It gives us following two types of labeled copies of bull graph.

Fig $4.10: \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(2,3)$

Fig 4.11: $\mathrm{v}_{\mathrm{f}}(0,1)=$
$(1,4), e_{f}(0,1)=(2,3)$

Take a path $\mathrm{Pm}==\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{m}}\right)$. Each edge on P_{m} has label ' 0 '. At v_{1} fuse a copy of type A label, at v_{2} fuse a copy of type A label, At v_{3} fuse a copy of type B label, at v_{4} fuse a copy of type A label, at v_{5} fuse type A label. For $i>5$ at each vertex v_{i} fuse a copy of Type B labeling for all $i \equiv$ $2(\bmod 4)$ and copy of Type A if $i \equiv 0,1,3(\bmod 4)$. The resultant graph has label distribution given by $v_{f}(0,1)=(3,2), e_{f}(0,1)=(2,3)$ for $m=1$, for $m=2$ is given by $v_{f}(0,1)=(6,4), e_{f}(0,1)=(5,6)$. For all m of type $4 x, x=1,2$.. we have label distribution given by $v_{f}(0,1)=(10 x, 10 x), e_{f}(0,1)=$ $(12 x-1,12 x)$. For all m of type $4 x+1, x=1,2$.. we have label distribution given by $v_{f}(0,1)=(13+10(x-1), 12+10(x-1)), e_{f}(0,1)=(12(x-1)+14,12(x-$ $1)+15)$. For all m of type $4 x+2, x=1,2 \ldots$ we have label distribution given by $v_{f}(0,1)=(14+10(x-1), 16+10(x-1)), e_{f}(0,1)=(12 x+5,12 x+6)$. For all m of type $4 x+3, x=0,1,2$. We have label distribution given by $v_{f}(0,1)=(7+10 x, 8+10 x), e_{f}(0,1)=(12 x+8,12 x+9)$.
The function f is independent of the vertex of bull used to form path union. The graph is e-cordial.
Theorem 4.5 Path union $\left(G=P_{m}\right.$ (bowtie)) of bull is e-cordial for m is not congruent to $2(\bmod 4)$.
Proof: Define a function $f: E(G) \rightarrow\{0,1\}$.It gives us following three types of labeled copies of bowtie graph. Take a path $\operatorname{Pm}==\left(v_{1}, v_{2}, . . v_{m}\right)$. Each edge on P_{m} has label ' 0 '. At v_{1} fuse a copy of type A label, at v_{2} fuse a copy of type A label, At v_{3} fuse a copy of type B label, at v_{4} fuse a copy of
type C label, at v_{5} fuse type A label. For $i>5$ at each vertex v_{i} fuse a copy of Type C labeling for $a l l i \equiv 1$ (mod 4), Type B labeling for all $i \equiv 2$ $(\bmod 4)$ and copy of Type A if $i \equiv 0,3(\bmod 4)$.

Fig $4.12: \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2), e_{f}(0,1)=(2,3)$

Fig $4.13: \mathrm{v}_{\mathrm{f}}(0,1)=$ $(1,4), e_{f}(0,1)=(2,4)$

Fig 4.14 : $\mathrm{v}_{\mathrm{f}}(0,1)=$
$(3,2), e_{f}(0,1)=(2,4)$

The resultant graph has label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(3,2), \mathrm{e}_{\mathrm{f}}(0,1)=(3,3)$ for $\mathrm{m}=1$, for $\mathrm{m}=2$ is given by $\mathrm{v}_{\mathrm{f}}(0,1)=(6,4)$, $\mathrm{e}_{\mathrm{f}}(0,1)=(7,6)$. For all m of type $4 x, x=2,3, .$. We have label distribution given by $v_{f}(0,1)=(10 x, 10 x), e_{f}(0,1)=(14 x, 14 x-1)$.

For $\mathrm{m}=4$ we have $\mathrm{v}_{\mathrm{f}}(0,1)=(10,10), \mathrm{e}_{\mathrm{f}}(0,1)=(13,14)$.
For all m of type $4 x+1, x=1,2 .$. we have label distribution given by $v_{f}(0,1)=(13+10(x-1), 12+10(x-1)), e_{f}(0,1)=(17+14(x-1), 17+14(x-1))$. For all m of type $4 x+2, x=1,2$.. we have label distribution given by $v_{f}(0,1)=(14+10(x-1), 16+10(x-1)), e_{f}(0,1)=(20+14(x-1), 21+14(x-1)$.

For all m of type $4 x+3, x=0,1,2 .$. We have label distribution given by $v_{f}(0,1)=(7+10 x, 8+10 x), e_{f}(0,1)=(14 x+10,14 x+10)$.
The function f is independent of the vertex of bowtie used to form path union. The graph is e-cordial.
Theorem 4.6 Path union ($\mathrm{G}=\mathrm{P}_{\mathrm{m}}($ dart $)$ of dart is e-cordial for m is not congruent to $2(\bmod 4)$.
Proof: Define a function $\mathrm{f}: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$.It gives us following three types of labeled copies of dart graph.

Fig $4.15: \mathrm{v}_{\mathrm{f}}(0,1)=$ $(3,2), e_{f}(0,1)=(3,3)$

Take a path $\operatorname{Pm}==\left(v_{1}, v_{2}, . . v_{m}\right)$. Each edge on P_{m} has label ' 0 '. At v_{1} fuse a copy of type A label, at v_{2} fuse a copy of type B label, at v_{3} fuse type C label. For $i>3$ at each vertex v_{i} fuse a copy of Type A labeling for all $i \equiv 0(\bmod 4)$ and copy of Type B if $i \equiv 1,3(\bmod 4)$ copy of Type C if $i \equiv$ $2(\bmod 4)$. The resultant graph has label distribution given by $v_{f}(0,1)=(3,2), e_{f}(0,1)=(3,3)$ for $m=1$, for $m=2$ is given by $v_{f}(0,1)=(6,4)$, $e_{f}(0,1)$ $=(6,7)$. For all m of type $4 x, x=1,2 .$. we have label distribution given by $v_{f}(0,1)=(10 x, 10 x), e_{f}(0,1)=(14 x, 14 x-1)$. For all m of type $4 x+1$, $x=0$, 1,2 .. we have label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(13+10 \mathrm{x}, 12+10 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(14 \mathrm{x}+17,14 \mathrm{x}+17)$. For all m of type $4 \mathrm{x}+2$, $\mathrm{x}=0$, 1 , 2. . we have label distribution given by $v_{f}(0,1)=(14+10 x, 16+10 x), e_{f}(0,1)=(14 x+21,14 x+20)$. For all m of type $4 x+3, x=0,1,2$.. we have label distribution given by $\mathrm{v}_{\mathrm{f}}(0,1)=(7+10 \mathrm{x}, 8+10 \mathrm{x}), \mathrm{e}_{\mathrm{f}}(0,1)=(14 \mathrm{x}+10,14 \mathrm{x}+10)$.
The function f is independent of the vertex of house used to form pathunion.

Conclusions:

In this paper we have discussed and shown that path union $P_{m}(G)$ is e-cordial for certain choice of G. The e-cordial function f we defined is such that irrespective of the vertex on G used to fuse with path vertex to obtain $P_{m}(G)$, the graph is e-cordial.
We have shown that 1) Path union of claw is e-cordial for all m.2) Path union of paw is e-cordial for all m.3) Path union ($\mathrm{P}_{\mathrm{m}}($ house)) of house is e-cordial for m is not congruent to $2(\bmod 4)$. 4)Path union $\left(G=P_{m}(\right.$ bull $)$ of bull is e-cordial for m is not congruent to 2(mod 4) 5) Path union ($G=P_{m}$ (bowtie)) of is e-cordial for m is not congruent to $2(\bmod 4)$. 6) Path union ($G=P_{m}$ (dart)) of dart is e-cordial for m is not congruent to $2(\bmod 4)$. Our work confirms one observation by Cahit that a graph with n vertices is not e-cordial if $n \equiv 2(\bmod 4)$.

References:

[1] Bapat M.V. Ph.D. thesis, University Of Mumbai, 2004
[2] Joe Gallian Dynamic survey of graph labeling 2016
[3] Harary, Graph Theory, Narosa publishing, New Delhi
[4] Yilmaz, Cahit ,E-cordial graphs, Ars combina,46,251-256.
[5] Introduction to Graph Theory by D. WEST, Pearson Education Asia.
[6] Mukund V. Bapat, Hindale, Devgad, Sindhudurg, Maharashtra India: 416630

